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SUMMARY

The method of matched asymptotic expansions is used in analyzing the
structure of the interaction region formed when a shock wave impinges on a
turbulent flat plate boundary layer in transonic flow. Solutions in outer re-
gions, governed by inviscid flow equations, lead to relations for the wall
pressure distribution. Solutions in the inner regions, governed by equations
in which Reynolds and/or viscous stresses are included, lead to a relation for
the wall shear stress. Solutions for the wall pressure distribution are review-
ed for both oblique and normal incoming shock waves. Solutions for the wall
shear stress are discussed.

SYMBOLS

% critical velocity of sound, cm/sec (ft/sec)

L distance from leading edge of flat plate to shock impingement point,
cm (in)

M Mach number

P pressure, dimensionless with critical pressure in external flow

Re Reynolds number based on critical conditions in external flow and i

U,v dimensionless velocity components in the X,Y directions, equations
(5a, 5b)

u,v velocity perturbations

uOI(y) variable part of dimensionless velocity in velocity defect layer in the
undisturbed boundary layer,

u_ dimensionless friction velocity, equation (lc)
X,Y dimensionless coordinates; Y = Y/L, X = (X-L)/ L

‘ﬁSupport for this work by NASA Langley Research Center, Research Grant
NGR 23-005-523, is gratefully acknowledged.
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X,v stretched coordinates
o inverse of Kdrman constant o = (0.41)_1

angle made by shock wave with the vertical

BO constant of order one

Y ratio of specific heats, Cp/ CV

6 order of thickness of undisturbed boundary layer at shock impinge-
ment point, dimensionless with L

Oy distance from wall to sonic line in undisturbed flow, dimensionless
with Li; &, = se-P0/a g-€/aur

A order of extent of outer inviscid flow region in X direction, dimen-
sionless with L; A = (\(+1)1/2 el/2s

A* order of extent of inner inviscid flow region in X direction, dimen-
sionless with L; A, = 6, u_l_1

€ parameter, € = Ue -1

T wall shear stress, dimensionless with undisturbed flow wall shear
stress at shock impingement point

Subscripts

e external

w wall

u upstream of interaction, in undisturbed flow

INTRODUCTION

Shock wave-boundary layer interaction is an important problem in both
external and internal flows. At transonic speeds, asymptotic methods have
proven successful in dealing with the problem when the boundary layer is
laminar (refs. 1,2) and are now being used in analyzing the interaction region
in turbulent boundary layers. In general, these analyses are based on two
parameters, € and u_, where € measures the difference between the flow
velocity and the critical sonic velocity in the flow external to the boundary
layer, and where u; is a dimensionless friction velocity which measures the
change in velocity in the velocity defect region of the undisturbed boundary
layer. Thus, if overbars denote dimensional quantities

— e +1
U:U/aek:1+e ; Me=1+3'-2—e+--- (la,b)
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Tou Te \1/2 o
u_ = > T a, ; Uu=1+e+u_ru01(y)+--- (lc,d)

wu wu

For transonic flow, then € << 1, and u_ is defined such that for Re >> 1,
u,. << 1, and the various problems considered may be characterized by the
relative orders of € and u;. The first work done on the turbulent boundary
layer problem was done by Adamson and Feo (ref. 3) who considered the case
where the impinging shock is weak (u.,-z << € << uq) and oblique, and Melnik and
Grossman (ref. 4 ) who considered the case where the shock is stronger (¢ =
O(u;) ) and normal. In both papers, it was concluded that in order for the in-
teraction to cause separation, it was necessary that € = O(1). As a first step
in this direction, the condition € >> u_ was discussed for the oblique wave case
by Adamson (ref. 5) and for the normal wave case by Adamson and Messiter
(ref. 6). In each of these papers it was pointed out, first, that the problem
could be divided into two parts consisting of the flow structure in thé outer in-
viscid flow regions and that in the inner near wall regions where Reynolds and
viscous stresses had to be taken into consideration, and, second, that the wall
pressure distribution could be derived from solutions in the inviscid flow re-
gions, without having to find solutions in the near wall regions. In each case,
attention was focused on the inviscid flow regions for near separation condi-
tions.

The present paper is concerned with two objectives. First, it is desired
to complete the picture of the shock structure in the oblique wave case, only
the outer part of this structure having been given in reference 5, and to show
the form of the pressure distribution inferred from such a structure. Second,
it is desired to compare this structure and pressure distribution with their
counterparts in the normal wave case, and discuss briefly the effects of the
very different pressure distributions on the conditions for incipient separation.
The presentation is aided by a brief review of the structure of the interaction
region in the normal wave case, and this is given in the next section. It should
be noted that in the following, parameters are defined such that 6 = u_, and
that the asymptotic relationship between u, and R is u_ = by (o In Re)‘1 + o
where for y = 1.4, b, = 0. 94,

STRUCTURE OF THE INTERACTION REGION - NORMAL SHOCK

The structure of the interaction region for the impinging normal shock
case is sketched in figure 1. It should be noted that the sketch is not to scale,
and that there are two near wall regions, the so-called Reynolds stress sub-
layer region and the wall region (ref. 6).

As seen in figure 1, there are two inviscid flow regions. The outer re-
gion is scaled by the thickness of the boundary layer, &, in the Y direction and
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by the order of the extent of the overall interaction-region, A, in the X direc-
tion. To this scale, one sees a normal shock penetrating the boundary layer,
represented by the velocity defect region. In the inner inviscid flow region,
scaled by &, and A, in the Y and X directions, respectively, (6;4< is the order
of the distance from the wall to the sonic line in the undisturbed flow) the up-
stream influence of the interaction, manifested by a deceleration of the fluid,
causes compression waves emanating from the sonic line to coalesce and form
a shock wave. This shock wave becomes more and more nearly normal, and
as Y/b6, = y —o , connects with the shock wave seen in the outer inviscid flow

region.

The wall pressure distribution is found in the limit as the appropriate Y
variable (i.e., in either the inner or outer inviscid region) goes to zero, The
solution valid everywhere in the interaction region except at the inception of
the interaction, where waves are coalescing and the wall pressure first begins
to rise from its undisturbed value,is

co U (T'l)
PW=1+YE+uT4YX 201 > dn + --- (2a)
T 0 (x°4+n%)
2 1/2
x =%/ g+ %Y u 2D)

Since the asymptotic form for uOl(Y) as y —>0is ugy ™~ ainy + BO’ one can show
that as x =0, P, reduces to

PW:1+Y€-uTZya'ﬂnx+... x <<1 (3)

A typical wall pressure distribution is shown in figure 2, for € = 0.167
(Me = 1.20) and u_ = 0.028 (Rg = 106), using Coles' form (ref. 7) for Uygs

u aﬂny—%(l-l—cos-ny) y <1 (4a)

01
=0 vy > 1 (4b)

The important points to note are that there are two inviscid flow regions,
with upstream influence existing only in the inner region which is exponentially
small compared to the outer region (i.e., calculate 5*/6 and A*/A) and that
the wall pressure increases monotonically. This point is borne out, for exam-
ple, by the experimental measurements for flow in tubes described in refer-

ence 8.

STRUCTURE OF THE INTERACTION REGION - OBLIQUE SHOCK

The shock wave structure for the oblique shock wave case is sketched in
figure 3. Again, it is important to note that this sketch is not to scale, and
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that the shock occurs in regions in which the governing equations are those

for inviscid, rotational flow. Viscous and Reynolds stresses must be taken
into account in the Reynolds stress sublayer region and wall region which exist
between the inviscid flow region and the wall.

As seen in figure 3, the oblique shock structure has many of the features
of the normal shock structure deep in the boundary layer, with a more compli-
cated outer structure. The analysis proceeds by considering first, the region
far from the wall, and then proceeding toward the wall. In this regard, the
upstream influence from the interaction region is confined to a very thin re-
gion, just as in the normal shock case. Thus, in analyzing the regions outside
the inner inviscid region, one need not consider any waves arising from lower
regions and affecting the incoming shock shape. Instead, as mentioned in
reference 5, the incoming oblique wave shape may be found by considering a
wave of known strength as it penetrates a shear layer represented by the
boundary layer. Thus, if one writes the expansions for the velocity compo-
nents as

5]
== . = -|----:]_ . e
U ae* 1+e+u_ru01+€u1 +€u+ (5a)
v 3/2
V:__>‘<:€/ v o+ e (Sb)
3
e

where uy is the perturbation due to the shock, and if the local angle made by
the shock with the vertical, ﬁs, is expanded as follows,

5s=€1/25+‘°' (6)

Then, using the shock-wave relations, one can show that f and u,= 1+ u'ru01/€ s
the value of u upstream of the shock, are related as follows (ref. 5).

s ,f28° 1/213/5[ g (2% \1/2]%/5 i
m * y+1_uu \/74-_—1 y+1  Yu - ¢ (7)

where ¢ is a constant. The value of ¢ in equation (7) is calculated by inserting
the known value of § for the wave in the flow external to the boundary layer,

wher =1.
eu,

Unlike the normal shock wave case, it does not appear possible to con-
sider one outer inviscid flow region in which the whole outer shock structure
is contained; evidently the shock structure is too complicated for this. In-
stead, a series of regions is considered, each one being deeper in the bound-
ary layer, and each one having smaller and smaller characteristic lengths in
both the X and Y directions. In an asymptotic sense, each of these regions
corresponds to a limit process such that u_ —0 with an intermediate variable
Y/m (u;) held fixed where n/u; =0, but n/é, > as u_ -+ 0. To the scale of
each of these regions the shock wave structure appears as shown in figure 4a,
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that is, the solution is that for a regular reflection with the angles associated
with each of the shock waves changing as the boundary layer is penetrated. If
u., denotes the value of u (eq. (5a)) downstream of the reflected shock for a
given region, with given values of B and L then

2 2
:—L—u+ £ ‘/Sﬁ 44 (8)

Yy vy+1 u (y+1) u
\,y+1

and the corresponding pressure is,

P:1+€y(-1+uu-ur)+--- (9)

Now, in each region or limit process description the incoming velocity is uni-
form to order €. Therefore, the velocity downstream of the reflected wave
and thus the pressure there is uniform to order €. Furthermore, for any
regions between the one in question and the wall, with the same characteristic
X dimension, 9P/8y = 0 to order €, so the pressure given in equation (9) is the
wall pressure corresponding to the characteristic X dimension in question.
Now from equations (7) through (9), one can show that dur/duu <0 so that
dP/du, > 0. Thus, as one considers regions deeper and deeper in the boundary
layer, i.e., as Y and in particular X decrease, the pressure downstream of
the reflected shock increases. Hence, as one approaches the shock along the
wall, from downstream of the shock, the wall pressure increases.

As successive regions, each deeper in the boundary layer, are consider-
ed, the structure shown in figure 4a is found until the limiting conditions for
which a regular reflection is possible are reached. From equation (8), this is
seen to occur when B has decreased such that
|32:4(v+1)uu/5 (10)
As this condition is reached, the shock structure evidently takes on the
Guderley Mach stem configuration (ref. 9). To the scale of the region in which
this flow configuration is found, the shock structure, then, is that seen in
figure 4b. That is, as the wall is approached, the incoming shock (Mach stem)
becomes a normal shock.

Finally, beneath the Mach stem region is the inner inviscid region, the
same region found in the normal shock wave case, in which compression waves
emanating from the sonic line coalesce to form a shock which becomes more
and more nearly normal as it moves away from the wall until it merges with
the normal shock in the Mach stem region.

The wall pressures associated with the regular reflection and the normal

shock problems have been calculated. Although the joining of these two parts
of the solution (through the Guderley Mach stem region) is more difficult, the
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general shape of the wall pressure distribution seems clear. Thus, just as in
the normal shock wave case, as one moves downstream toward the Mach stem
region and the shock becomes stronger, the wall pressure increases. On the
other hand, from the outer inviscid regions discussed above, it was shown that
as one moves upstream toward the Mach stem region, the wall pressure in-
creases also. Therefore, the wall pressure distribution must, as shown in
figure 5, go through a maximum in the Mach stem region, this maximum pres-
sure being the pressure behind the normal part of the wave (Mach stem) shown
in figure 4b. This form for the pressure distribution is also apparent in ex-
perimental results as shown, for example, in reference 10. In these experi-
ments the external flow was supersonic but since the flow near the wall is
transonic, the general features of the structure of the interaction region shown
here must apply.

DISCUSSION

The structure of the shock wave in the interaction region is seen to be
much more complicated in the oblique shock case (fig. 3) than in the normal
shock case (fig. 1) and this is reflected in the fact that, in general, solutions
are much more difficult to obtain in the oblique than in the normal shock case.
The differences in the wall pressure distributions in the two cases are illus-
trated by comparing figures 2 and 5. In the normal shock wave case, the
pressure increases monotonically, while in the oblique shock wave case, the
pressure goes through a maximum and decreases then to its final value. Now,
in the inviscid flow regions, the pressure perturbation is directly proportional
to the negative of the perturbation in U, and as the wall is approached, the
solution for U is matched with a corresponding solution from the Reynolds
stress sublayer region which is in turn matched with a solution in the wall
region. The result is that as the pressure increases, the velocity near the
wall decreases, such that 8U/9Y near the wall decreases and hence the wall
shear stress, Tw? decreases. In fact, Ty can be written directly in terms of
the pressure perturbations (refs. 3 and 4). Therefore, in the normal-shock
wave case, T, decreases monotonically to its lowest value, while in the oblique
wave case, it goes through a minimum and rises to its final value. This situ-

‘ation is expected to hold up to separation, i.e., for the case of incipient

separation. Hence, ‘the point at which T first goes to zero (incipient separa-
tion) will occur within the interaction region for the oblique shock case, and
at the far downstream limit of the interaction region in the normal shock case.
In the event that separation occurs, the results discussed above do not hold,
of course; in that case, the displacement of the incoming flow by the separated
bubble causes a change in the outer shock structure, and thus in the pressure
distributions.
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Figure 4.- Sketch of shock structure in intermediate inviscid flow regions
for case where incoming wave is oblique.
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Figure 5.- Sketch of wall pressure distribution corresponding to indicated
shock wave structure for case where incoming wave is oblique.
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